

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) Siddharth Nagar, Narayanavanam Road – 517583 <u>OUESTION BANK (DESCRIPTIVE)</u>

Subject with Code: Signals, Systems and Random Processes (20EC0404) Course & Branch: B.Tech - ECE

Year & Sem: II-B.Tech & I-Sem

Regulation: R20

<u>UNIT –I</u>

INTRODUCTION TO SIGNALS AND SYSTEMS

1.	a)	Define signal. Explain various elementary signals and indicate them	[L2] [CO1]	[6M]
		graphically.		
	b)	Sketch the following signals.	[L3] [CO1]	[6M]
		(i) $x(t)=2 u(t+2)-2 u(t-3)$ (ii) $x(t)=r(t)-r(t-1)-r(t-3)+r(t-4)$		
2.	a)	Classify the signals with respect to continuous time and discrete time.	[L2] [CO1]	[6M]
	b)	Sketch the different signals.	[L3] [CO1]	[6M]
3.		Define and Explain the Following with an example.	[L2] [CO1]	[12M]
		(i) Continuous time and Discrete time signals		
		(ii) Energy and Power Signal.		
		(iii) Periodic and Aperiodic Signal		
		(iv) Deterministic and Non-Deterministic Signal.		
4.	a)	Define the Energy and Power of continues and discrete time signals with	[L3] [CO1]	[6M]
		necessary equations.		
	b)	Identify whether the following signals are energy signals or power signals.	[L3] [CO1]	[6M]
		(i) $x(t)=8\cos 4t \cos 6t$ (ii) $x(t)=e^{j(3t+(\pi/2))}$ (iii) $x(n)=(1/2)^n u(n)$		
5.		Find whether the following signals are periodic or not? If periodic determine	[L3] [CO1]	[12M]
		the fundamental Period.		
		(i) $\sin(12\pi t)$ (ii) $\sin(10t+1) - 2\cos(5t-2)$ (iii) $e^{j4\pi t}$		
6.		What are the basic operations on signals? Explain with an example.	[L2] [CO1]	[12M]
7.		Define a System. Classify the Systems with an example for each.	[L2] [CO1]	[12M]
8.	a)	Define the following Systems	[L1] [CO2]	[8M]
		(i) Linear and Non-Linear		
		(ii) Time invariant and time variant.		
		(iii) Static and dynamic		
		(iv) Causal and Non-causal		
	b)	Find whether the following system is	[L3] [CO2]	[4M]
		(i) Linear or Non-Linear		
		(ii) Static and dynamic.		
		$\frac{d^{3}y(t)/dt^{3}+2d^{2}y(t)/dt^{2}+4dy(t)/dt+3y^{2}(t)=x(t+1)}{2}$		
9.		Interpret whether the following systems are Linear or Non- Linear, Time	[L3] [CO3]	[12M]
		Invariant or Time Variant and Stable or Unstable.		
		(1) $y(n) = \log_{10} x(n) $		
10		(1) y(t) = at x(t) + bt x(t-4)		
10.	a)	Define Stable and Unstable systems with an example.	[L2] [CO3]	
	D)	Determine whether the following systems are stable or not. (i) $x(t) = x(t) - (t + 5) x(t)$	[L3] [CO3]	
		(1) $y(t) = (t+3) u(t)$ (ii) $h(t) = e^{it} for 0 ext{ (t - 1)}$		
	1	(11) $n(n)=a$ IOF U <n<11< th=""><th> </th><th></th></n<11<>		

<u>UNIT –II</u>

FOURIER SERIES AND FOURIER TRANSFORM

1.	a)	Give the representation of Fourier series.	[L2] [CO2]	[2M]
	b)	List the Properties of Fourier series.	[L1] [CO2]	[2M]
-	c)	State and Prove the Linearity, Time Shifting, Time Reversal and Time	[L3] [CO2]	[8M]
		Convolution Properties of Fourier series.		
2.	a)	Discuss the Dirichlet's Conditions.	[L2] [CO2]	[2M]
-	b)	Explain the representation of a signal in Trigonometric Fourier series.	[L2] [CO2]	[2M]
-	c)	Derive the Trigonometric Fourier series coefficients.	[L3] [CO2]	[8M]
3.	a)	Explain the representation of a signal in exponential Fourier series.	[L2] [CO2]	[3M]
-	b)	Derive the Exponential Fourier series coefficient.	[L3] [CO2]	[9M]
4.		Construct the Trigonometric Fourier series expansion of the half wave	[L3] [CO2]	[12M]
		rectified sine wave shown in figure.		
		v(t)		
5		$\frac{0}{\pi} \frac{\pi}{2\pi} \frac{3\pi}{5\pi} \frac{t}{t}$	[1 3] [CO2]	[12M]
5.		Develop the Exponential Fourier Series for the given signal below	[L3] [C02]	
		x(t)		
		$\int_{-\infty}^{\infty} (0)$		
		t		
		-2П .П 0 П 2П		
		A		
6.	a)	Demonstrate how Fourier Transform derived from Fourier series.	[L2] [CO2]	[4M]
	b)	Define Fourier transform and find the Fourier transform of any one standard	[L3] [CO2]	[4M]
		signal.	ļ	
	b)	Define magnitude and phase response.	[L1] [CO2]	[4M]
7.		Find the Fourier transform of the following.	[L3] [CO2]	[12M]
		(1) $x(t) = \delta(t)$ (11) $x(t) = u(t)$ (111) $x(t) = sgn(t)$ (1v) $sin\omega_0 t$		
0	, ,	$\frac{(v)\cos\omega_0 t}{(v_1) x(t) = e^{-u} u(t)}$		503.63
δ.	a)	List the properties of Continuous time Fourier transform.		
	D)	State and prove the Linearity and Time Shifting properties of Continuous	[L3] [CO2]	
	-)	time Fourier transform, magnitude and phase response of the given	[1,2][CO2]	F 4 N 47 1
	C)	Find the Fourier transform, magnitude and phase response of the given signal $y(t) = e^{-t} \cos(5t y(t))$	[L3] [CO2]	[4][4]
0		signal. $X(t) = e^{-1} \cos t u(t)$	[1 2] [CO2]	[10]
9.		Find the inverse Fourier transform of the following signals. $4(i\omega)+6$	[L3] [C02]	
		(i) $X(\boldsymbol{\omega}) = \frac{1}{(i\boldsymbol{\omega})^2 + 6(i\boldsymbol{\omega}) + 8}$		
		(ii) $\mathbf{X}(\boldsymbol{\omega}) = \frac{1+3(j\omega)}{2}$		
		(ii) $\Lambda(\omega) = \frac{1}{(j\omega+3)^2}$		
10.	a)	Explain about Fourier Transform of Periodic Signals.	[L2] [CO2]	[6M]
	b)	Find the Fourier Transform of the following signals using Properties.	[L3] [CO2]	[6M]
		(i) $e^{-at} u(t)$		
		(ii) $\delta(t+2)+\delta(t+1)+\delta(t-1+\delta(t-2))$	l	

<u>UNIT –III</u> <u>SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS</u>

1.	a)	Describe the following responses of Systems.	[L2] [CO2]	[6M]
		(i) Impulse Response.		
		(ii) Step Response.		
		(iii) Response of the System.		
	b)	Define linear time invariant and linear time variant system with necessary	[L1] [CO2]	[6M]
		equations.		
2.	a)	List the properties of linear time invariant system.	[L1] [CO2]	[2M]
	b)	State and prove the following properties of linear time invariant system.	[L3] [CO2]	[10M]
		(i) Cumulative Property		
		(ii) Invertability Property		
		(iii) Stability Property		
		(iv) Causality Property		
3.	a)	State and Prove the Following Properties of LTI System.	[L3] [CO2]	[6M]
		(i) Distributive Property		
		(ii) Associative Property		
	b)	Derive the Transfer function of LTI system.	[L3] [CO2]	[6M]
4.		Consider a causal LTI system with frequency response $H(\omega)=1/4+j\omega$, for a	[L3] [CO2]	[12M]
		input x(t), the system is observed to produce the output $y(t)=e^{-2t}u(t)-e^{-4t}u(t)$.		
		Find the input x(t).		
5.		Consider a stable LTI system that is characterized by the differential	[L3] [CO2]	[12M]
		equation $d^2y(t)/dt^2+4dy(t)/dt+3y(t) = dx(t)/dt+2x(t)$ find the response		
		for an input $x(t)=e^{-t}u(t)$.		
6.	a)	The impulse response of a continuous-time system is expressed as	[L3] [CO2]	[6M]
		$h(t)=e^{-2t}u(t)$. Find the Frequency response of the system.		
	b)	Explain the Filter characteristics of linear systems with neat diagrams.	[L2] [CO2]	[6M]
7.	a)	Define Convolution. State and prove the time convolution theorem with	[L3] [CO4]	[4M]
		Fourier transforms.		
	b)	State and prove the frequency convolution theorem with Fourier transforms.	[L3] [CO4]	[4M]
	c)	Find the convolution of the following signal $x_1(t) = e^{-2t} u(t)$,	[L3] [CO4]	[4M]
		$x_2(t) = e^{-4t} u(t).$		
8.	a)	Demonstrate the Procedure to perform convolution graphically.	[L2] [CO4]	[6M]
	b)	Examine the convolution of the following signals by graphical method.	[L3] [CO4]	[6M]
		$x(t)=e^{-3t}u(t)$ and $h(t)=u(t+3)$		
9.	a)	Define Cross correlation.	[L2] [CO4]	[4M]
	b)	List the properties of Cross correlation function.	[L1] [CO4]	[2M]
	c)	State and prove following properties of Cross correlation function.	[L3] [CO4]	[6M]
		(i) Conjugate Symmetry		
		(ii) $ R_{XY}(\tau) \leq \sqrt{R_{XX}(0) \cdot R_{YY}(0)}$		
10.	a)	Define Auto correlation.	[L2] [CO4]	[4M]
	b)	List the properties of Auto correlation function.	[L1] [CO4]	[2M]
	c)	State and prove the following properties of Auto correlation function.	[L3] [CO4]	[6M]
		(i) $R_{XX}(-\tau) = R_{XX}(\tau)$		
		(ii) $R_{XX}(0) = E[X^2(t)]$		

<u>UNIT –IV</u> <u>LAPLACE TRANSFORMS AND INTRODUCTION TO PROBABILITY</u>

1.	a)	Define Laplace Transformation. Explain the ROC and its constraints.	[L2] [CO5]	[4M]
	b)	Determine the Laplace transform of the signal $x(t) = e^{-at} u(t) - e^{-bt} u(-t)$ and	[L3] [CO5]	[4M]
		also find its ROC.		
	c)	Find the Laplace transforms and ROC for the following signals.	[L3] [CO5]	[4M]
		(i) $x(t)=e^{-5t}u(t-1)$		
		(ii) $x(t)=e^{-a t }$		
2.	a)	Describe the Laplace domain analysis.	[L2] [CO5]	[5M]
	b)	List the Properties of Laplace Transform.	[L1] [CO2]	[1M]
	c)	State and prove the Linearity and Time Shifting Properties of Laplace	[L3] [CO2]	[6M]
		Transform.		
3.	a)	State and prove the Time Reversal Property of Laplace transform.	[L2] [CO2]	[3M]
	b)	Derive the Laplace transform of any three standard signals.	[L3] [CO3]	[9M]
4.		Illustrate the inverse Laplace transform of the following.	[L3] [CO5]	[12M]
		(i) $X(s) = 1/s(s+1)(s+2)(s+3)$		
		(ii) $X(s)=s/(s+3)(s^2+6s+5)$		
5.	a)	Determine the Laplace transform of the following signals using properties	[L3] [CO5]	[8M]
		(i) $x(t) = t e^{-t} u(t)$		
		(ii) $x(t)=t e^{-2t} \sin 2t u(t)$		
	b)	Derive the relation between Laplace Transform and Fourier Transform of a	[L3] [CO5]	[4M]
		signal.		
6.	a)	Define Probability.	[L1] [CO6]	[2M]
	b)	Define the following with examples.	[L1] [CO6]	[10M]
		(i) Sample space		
		(ii) Event		
		(iii) Mutually exclusive events.		
		(iv) Independent events		
7.	a)	Explain the concept of Joint probability.	[L2] [CO6]	[6M]
	b)	Explain the concept of Conditional probability.	[L2] [CO6]	[6M]
8.	a)	Define Random variable and explain briefly.	[L2] [CO6]	[6M]
	b)	Define probability distribution and density functions.	[L1] [CO6]	[4M]
	c)	List the properties of probability distribution and density functions.		
9.	a)	Examine the distribution function $F_{xx}(x,y)$	[L3] [CO6]	[6M]
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	b)	P(X,y) 0.2 0.5 0.4 0.1	[] 2] [CO6]	
	D)	A random variable A has a probability density function $f_{(x)} = CC(1, x^4)$	[L3] [C00]	
		$1_{X}(X) = 0$ Otherwise		
		Determine the constant 'C'		
10		Let X is a continuous random variable with density function	[] 3] [CO6]	[12M]
10.		f $x_{1}(x) = \int \frac{x}{9+k}$ $0 < x < 6$		
		1×10^{-1}		
		(i) Find 'k'		
		(ii) Find $p[2 < x < 5]$		
1	1	\/ Fr 1	1	1

b) Classify the Random Processes and explain briefly. [L2] [CO6] [4. c. a) Define and Differentiate the Distribution and Density functions of a Random [L2] [CO6] [4. b) Define and explain Stationary and Statistical Independence of Random [L2] [CO6] [6] b) Define and explain Stationary and Statistical Independence of Random [L2] [CO6] [6] c. a) Describe the first order, second order, wide-sense and strict sense stationary [L2] [CO6] [6] c. b) Illustrate about Time averages of Random process. [L3] [CO6] [6] d. a) Define Auto Correlation Function. [L1] [CO6] [6]	[6M] [6M] [6M] [6M] [6M] [4M] [8M]
 2. a) Define and Differentiate the Distribution and Density functions of a Random [L2] [CO6] [4 b) Define and explain Stationary and Statistical Independence of Random [L2] [CO6] [4 b) Describe the first order, second order, wide-sense and strict sense stationary [L2] [CO6] [4 b) Illustrate about Time averages of Random process. [L3] [CO6] [4 c) Define Auto Correlation Function. [L1] [CO6] [4 	[6M] [6M] [6M] [6M] [4M] [8M]
Process. Process. b) Define and explain Stationary and Statistical Independence of Random process. 3. a) Describe the first order, second order, wide-sense and strict sense stationary process. b) Illustrate about Time averages of Random process. 4. a) Define Auto Correlation Function. L1] [CO6]	[6M] [6M] [6M] [4M] [8M] 12M]
b)Define and explain Stationary and Statistical Independence of Random[L2] [CO6][4]3. a)Describe the first order, second order, wide-sense and strict sense stationary[L2] [CO6][4]b)Illustrate about Time averages of Random process.[L3] [CO6][4]4. a)Define Auto Correlation Function.[L1] [CO6][4]	[6M] [6M] [6M] [4M] [8M]
a) process. 3. a) Describe the first order, second order, wide-sense and strict sense stationary process. b) Illustrate about Time averages of Random process. 4. a) Define Auto Correlation Function. L1] [CO6] b) List the properties of Auto Correlation Expection State and sense following	[6M] [6M] [4M] [8M] 12M]
3. a) Describe the first order, second order, wide-sense and strict sense stationary [L2] [CO6] [4] b) Illustrate about Time averages of Random process. [L3] [CO6] [4] 4. a) Define Auto Correlation Function. [L1] [CO6] [4] b) List the properties of Auto Correlation Function. [L2] [CO6] [4]	[6M] [6M] [4M] [8M] 12M]
process. [L3] [CO6] b) Illustrate about Time averages of Random process. 4. a) Define Auto Correlation Function. b) List the properties of Auto Correlation Expection State and process.	[6M] [4M] [8M] 12M]
b)Illustrate about Time averages of Random process.[L3] [CO6][4.4.a)Define Auto Correlation Function.[L1] [CO6][4.b)List the properties of Auto Correlation Expection State and prove following[L2] [CO6][4.	[6M] [4M] [8M]
4. a) Define Auto Correlation Function. [L1] [CO6] [4. b) List the properties of Auto Correlation Expection State and prove following.	[4M] [8M]
b) List the properties of Auto Correlation Expection State and some full-size [12][COC]	[8M] 12M]
b) List the properties of Auto Correlation Function. State and prove following [L3] [CO6] [3]	12M]
property.	12M]
(i) If $E[X(t)] = \overline{X} \neq 0$ and $X(t)$ is ergodic with no period components	12M]
then $\lim_{ \tau \to\infty} R_{XX}(\tau) = \overline{X}^2$.	12M]
5.Prove the following properties of Auto Correlation function.[L3] [CO6][1	
(i) $ \mathbf{R}_{\mathbf{x}\mathbf{x}}(\tau) \leq \mathbf{R}_{\mathbf{x}\mathbf{x}}(0)$	
(ii) $R_{xx}(-\tau) = R_{xx}(\tau)$	
(iii) $R_{xx}(0) = E[X^2(t)]$	
6. a)Define Cross Correlation Function.[L1] [CO6][4]	[4M]
b) List the properties of Cross Correlation Function. [L1] [CO6] [X]	[2M]
c)State and prove the following properties.[L3] [CO6]	[6M]
(i) $R_{XY}(-\tau) = R_{YX}(\tau)$	
(ii) If tow random processes X(t) and Y(t) are statistically	
independent and wide sense stationary, $R_{XY}(\tau) = X.Y$	
7. a) Describe the concept of power spectral density. List the properties of power [L2] [CO6] [0]	[6M]
spectral density.	
b) State and prove the following properties of power spectral density. [L3] [CO6]	[6M]
$(1) \qquad S_{XX}(\omega) \ge 0$	
$(1) S_{XX}(-\omega) = S_{XX}(\omega)$	
6. a) Prove that the Power Spectral Density of the derivative $X(t)$ is equal to ω^{-1} [L5] [CO6] [(
times the Power Spectral Density of $SXX(\omega)$.	[6M]
[0] show that the autocorrelation function of a stationary fandoin process is an [L2] [CO0] [
9 a) Explain the concept of cross power density spectrum. List the properties of [12][CO6] [1	6M 1
cross power spectral density	
b) State and prove the following properties of cross power density spectrum [13] [CO6] [1	[6M]
(i) $S_{vv}(-\omega) = S_{vv}(-\omega)$	
(i) Imaginary part of cross power density spectrum is an odd	
function.	
10. a) If the Power Spectral Density of $x(t)$ is $Sxx(\omega)$ then find the Power Spectral [L3] [CO6]	[6M]
Density of $dx(t)/dt$.	1
b) The power spectral density of a stationary random process is given by [L3] [CO6]	[6M]
$ \qquad Sxx(\omega) = \bigcap A ; \qquad -k < \omega < k$	
1 1 1 1 1 1 1 1 1 1	
Find the auto correlation function.	

Prepared by:

- Dr P G Kuppusamy Professor 1.
- 2.
- S V Rajesh Kumar G Raghul Assistant Professor Assistant Professor 3.