SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road - 517583
OUESTION BANK (DESCRIPTIVE)
Subject with Code: Signals, Systems and Random Processes (20EC0404) Course \& Branch: B.Tech - ECE
Year \& Sem: II-B.Tech \& I-Sem
Regulation: R20

UNIT -I
 INTRODUCTION TO SIGNALS AND SYSTEMS

1.	a)	Define signal. Explain various elementary signals and indicate them graphically.	[L2] [CO1]	[6M]
	b)	Sketch the following signals. (i) $\quad \mathrm{x}(\mathrm{t})=2 \mathrm{u}(\mathrm{t}+2)-2 \mathrm{u}(\mathrm{t}-3)$ (ii) $x(t)=r(t)-r(t-1)-r(t-3)+r(t-4)$	[L3] [CO1]	[6M]
2.	a)	Classify the signals with respect to continuous time and discrete time.	[L2] [CO1]	[6M]
	b)	Sketch the different signals.	[L3] [CO1]	[6M]
3.		Define and Explain the Following with an example. (i) Continuous time and Discrete time signals (ii) Energy and Power Signal. (iii) Periodic and Aperiodic Signal (iv) Deterministic and Non-Deterministic Signal.	[L2] [CO1]	[12M]
4.	a)	Define the Energy and Power of continues and discrete time signals with necessary equations.	[L3] [CO1]	[6M]
	b)	Identify whether the following signals are energy signals or power signals. (i) $x(t)=8 \cos 4 t \cos 6 t$ (ii) $x(t)=\mathrm{e}^{\mathrm{j}[3 t+(\pi / 2)]}$ (iii) $x(n)=(1 / 2)^{n} u(n)$	[L3] [CO1]	[6M]
5.		Find whether the following signals are periodic or not? If periodic determine the fundamental Period. (i) $\quad \sin (12 \pi t)$ (ii) $\sin (10 t+1)-2 \cos (5 t-2)$ (iii) $\mathrm{e}^{\mathrm{j} 4 \pi \mathrm{t}}$	[L3] [CO1]	[12M]
6.		What are the basic operations on signals? Explain with an example.	[L2] [CO1]	[12M]
7.		Define a System. Classify the Systems with an example for each.	[L2] [CO1]	[12M]
8.	a)	Define the following Systems (i) Linear and Non- Linear (ii) Time invariant and time variant. (iii) Static and dynamic (iv) Causal and Non-causal	[L1] [CO2]	[8M]
	b)	Find whether the following system is (i) Linear or Non- Linear (ii) Static and dynamic. $d^{3} y(t) / d t^{3}+2 d^{2} y(t) / d t^{2}+4 d y(t) / d t+3 y^{2}(t)=x(t+1)$	[L3] [CO2]	[4M]
9.		Interpret whether the following systems are Linear or Non- Linear, Time Invariant or Time Variant and Stable or Unstable. (i) $y(n)=\log _{10}\|x(n)\|$ (ii) $y(t)=a t^{2} x(t)+b t x(t-4)$	[L3] [CO3]	[12M]
10.	a)	Define Stable and Unstable systems with an example.	[L2] [CO3]	[6M]
	b)	Determine whether the following systems are stable or not. (i) $\mathrm{y}(\mathrm{t})=(\mathrm{t}+5) \mathrm{u}(\mathrm{t})$ (ii) $\mathrm{h}(\mathrm{n})=\mathrm{a}^{\mathrm{n}}$ for $0<\mathrm{n}<11$	[L3] [CO3]	[6M]

FOURIER SERIES AND FOURIER TRANSFORM

1.	a)	Give the representation of Fourier series.	[L2] [CO2]	[2M]
	b)	List the Properties of Fourier series.	[L1] [CO2]	[2M]
	c)	State and Prove the Linearity, Time Shifting, Time Reversal and Time Convolution Properties of Fourier series.	[L3] [CO2]	[8M]
2.	a)	Discuss the Dirichlet's Conditions.	[L2] [CO2]	[2M]
	b)	Explain the representation of a signal in Trigonometric Fourier series.	[L2] [CO2]	[2M]
	c)	Derive the Trigonometric Fourier series coefficients.	[L3] [CO2]	[8M]
3.	a)	Explain the representation of a signal in exponential Fourier series.	[L2] [CO2]	[3M]
	b)	Derive the Exponential Fourier series coefficient.	[L3] [CO2]	[9M]
4.		Construct the Trigonometric Fourier series expansion of the half wave rectified sine wave shown in figure.	[L3] [CO2]	[12M]
5.		Develop the Exponential Fourier Series for the given signal below	[L3] [CO2]	[12M]
6.	a)	Demonstrate how Fourier Transform derived from Fourier series.	[L2] [CO2]	[4M]
	b)	Define Fourier transform and find the Fourier transform of any one standard signal.	[L3] [CO2]	[4M]
	b)	Define magnitude and phase response.	[L1] [CO2]	[4M]
7.		Find the Fourier transform of the following. (i) $x(t)=\delta(t)$ (ii) $x(t)=u(t)$ (iii) $x(t)=\operatorname{sgn}(t)$ (iv) $\sin \omega_{0} t$ (v) $\cos \omega_{0} t$ (vi) $x(t)=e^{-a t} u(t)$	[L3] [CO2]	[12M]
8.	a)	List the properties of Continuous time Fourier transform.	[L1] [CO2]	[2M]
	b)	State and prove the Linearity and Time Shifting properties of Continuous time Fourier transform.	[L3] [CO2]	[6M]
	c)	Find the Fourier transform, magnitude and phase response of the given signal. $x(t)=e^{-t} \cos 5 t u(t)$	[L3] [CO2]	[4M]
9.		Find the inverse Fourier transform of the following signals. (i) $\quad X(\omega)=\frac{4(j \omega)+6}{(j \omega)^{2}+6(j \omega)+8}$ (ii) $\quad X(\omega)=\frac{1+3(j \omega)}{(j \omega+3)^{2}}$	[L3] [CO2]	[12M]
10.	a)	Explain about Fourier Transform of Periodic Signals.	[L2] [CO2]	[6M]
	b)	Find the Fourier Transform of the following signals using Properties. (i) $e^{-a t} u(t)$ (ii) $\delta(\mathrm{t}+2)+\delta(\mathrm{t}+1)+\delta(\mathrm{t}-1+\delta(\mathrm{t}-2)$	[L3] [CO2]	[6M]

UNIT -III
 SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS

1.	a)	Describe the following responses of Systems. (i) Impulse Response. (ii) Step Response. (iii) Response of the System.	[L2] [CO2]	[6M]
	b)	Define linear time invariant and linear time variant system with necessary equations.	[L1] [CO2]	[6M]
2.	a)	List the properties of linear time invariant system.	[L1] [CO2]	[2M]
	b)	State and prove the following properties of linear time invariant system. (i) Cumulative Property (ii) Invertability Property (iii) Stability Property (iv) Causality Property	[L3] [CO2]	[10M]
3.	a)	State and Prove the Following Properties of LTI System. (i) Distributive Property (ii) Associative Property	[L3] [CO2]	[6M]
	b)	Derive the Transfer function of LTI system.	[L3] [CO2]	[6M]
4.		Consider a causal LTI system with frequency response $H(\Phi)=1 / 4+j \omega$, for a input $x(t)$, the system is observed to produce the output $y(t)=e^{-2 t} u(t)-e^{-4 t} u(t)$. Find the input $x(t)$.	[L3] [CO2]	[12M]
5.		Consider a stable LTI system that is characterized by the differential equation $\quad d^{2} y(t) / d t^{2}+4 d y(t) / d t+3 y(t)=d x(t) / d t+2 x(t)$ find the response for an input $x(t)=e^{-t} u(t)$.	[L3] [CO2]	[12M]
6.	a)	The impulse response of a continuous-time system is expressed as $h(t)=e^{-2 t} u(t)$. Find the Frequency response of the system.	[L3] [CO2]	[6M]
	b)	Explain the Filter characteristics of linear systems with neat diagrams.	[L2] [CO2]	[6M]
7.	a)	Define Convolution. State and prove the time convolution theorem with Fourier transforms.	[L3] [CO4]	[4M]
	b)	State and prove the frequency convolution theorem with Fourier transforms.	[L3] [CO4]	[4M]
	c)	Find the convolution of the following signal $\mathrm{x}_{1}(\mathrm{t})=\boldsymbol{e}^{-2 \boldsymbol{t} \boldsymbol{u}} \boldsymbol{u}(\boldsymbol{t})$, $\mathrm{x}_{2}(\mathrm{t})=\boldsymbol{e}^{-4 \boldsymbol{t}} \boldsymbol{u}(\boldsymbol{t})$.	[L3] [CO4]	[4M]
8.	a)	Demonstrate the Procedure to perform convolution graphically.	[L2] [CO4]	[6M]
	b)	Examine the convolution of the following signals by graphical method. $\mathbf{x}(t)=e^{-3 t} u(t) \text { and } h(t)=u(t+3)$	[L3] [CO4]	[6M]
9.	a)	Define Cross correlation.	[L2] [CO4]	[4M]
	b)	List the properties of Cross correlation function.	[L1] [CO4]	[2M]
	c)	State and prove following properties of Cross correlation function. (i) Conjugate Symmetry (ii) $\quad\left\|R_{X Y}(\tau)\right\| \leq \sqrt{R_{X X}(0) \cdot R_{Y Y}(0)}$	[L3] [CO4]	[6M]
10.	a)	Define Auto correlation.	[L2] [CO4]	[4M]
	b)	List the properties of Auto correlation function.	[L1] [CO4]	[2M]
	c)	State and prove the following properties of Auto correlation function. (i) $\mathrm{R}_{\mathrm{XX}}(-\tau)=\mathrm{R}_{\mathrm{XX}}(\tau)$ (ii) $\quad \mathrm{R}_{\mathrm{XX}}(0)=\mathrm{E}\left[\mathrm{X}^{2}(\mathrm{t})\right]$	[L3] [CO4]	[6M]

UNIT -IV
 LAPLACE TRANSFORMS AND INTRODUCTION TO PROBABILITY

UNIT - V
 RANDOM PROCESSES

1.	a)	Explain the concept of Random process.	[L2] [CO6]	[6M]
	b)	Classify the Random Processes and explain briefly.	[L2] [CO6]	[6M]
2.	a)	Define and Differentiate the Distribution and Density functions of a Random Process.	[L2] [CO6]	[6M]
	b)	Define and explain Stationary and Statistical Independence of Random process.	[L2] [CO6]	[6M]
3.	a)	Describe the first order, second order, wide-sense and strict sense stationary process.	[L2] [CO6]	[6M]
	b)	Illustrate about Time averages of Random process.	[L3] [CO6]	[6M]
4.	a)	Define Auto Correlation Function.	[L1] [CO6]	[4M]
	b)	List the properties of Auto Correlation Function. State and prove following property. (i) If $\mathrm{E}[\mathrm{X}(\mathrm{t})]=\overline{\boldsymbol{X}} \neq 0$ and $\mathrm{X}(\mathrm{t})$ is ergodic with no period components then $\lim _{\|\tau\| \rightarrow \infty} \boldsymbol{R}_{X X}(\tau)=\bar{X}^{2}$.	[L3] [CO6]	[8M]
5.		Prove the following properties of Auto Correlation function. (i) $\quad\left\|\mathrm{R}_{\mathrm{xx}}(\tau)\right\| \leq \mathrm{R}_{\mathrm{xx}}(0)$ (ii) $\quad \mathrm{R}_{\mathrm{xx}}(-\tau)=\mathrm{R}_{\mathrm{xx}}(\tau)$ (iii) $\quad \mathrm{R}_{\mathrm{xx}}(0)=\mathrm{E}\left[\mathrm{X}^{2}(\mathrm{t})\right]$	[L3] [CO6]	[12M]
6.	a)	Define Cross Correlation Function.	[L1] [CO6]	[4M]
	b)	List the properties of Cross Correlation Function.	[L1] [CO6]	[2M]
	c)	State and prove the following properties. (i) $\quad \mathrm{R}_{\mathrm{XY}}(-\tau)=\mathrm{R}_{\mathrm{YX}}(\tau)$ (ii) If tow random processes $\mathrm{X}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ are statistically independent and wide sense stationary, $\mathrm{R}_{\mathrm{XY}}(\tau)=\bar{X} . \overline{\boldsymbol{Y}}$	[L3] [CO6]	[6M]
7.	a)	Describe the concept of power spectral density. List the properties of power spectral density.	[L2] [CO6]	[6M]
	b)	State and prove the following properties of power spectral density. (i) $\quad S_{X X}(\omega) \geq 0$ (ii) $\mathrm{S}_{\mathrm{XX}}(-\omega)=\mathrm{S}_{\mathrm{XX}}(\omega)$	[L3] [CO6]	[6M]
8.	a)	Prove that the Power Spectral Density of the derivative $\mathrm{X}(\mathrm{t})$ is equal to ω^{2} times the Power Spectral Density of $\operatorname{Sxx}(\omega)$.	[L5] [CO6]	[6M]
	b)	Show that the autocorrelation function of a stationary random process is an even function of τ.	[L2] [CO6]	[6M]
9.	a)	Explain the concept of cross power density spectrum. List the properties of cross power spectral density.	[L2] [CO6]	[6M]
	b)	State and prove the following properties of cross power density spectrum. (i) $\quad S_{X Y}(-\omega)=S_{Y X}(-\omega)=S_{Y X^{*}}(\omega)$ (ii) Imaginary part of cross power density spectrum is an odd function.	[L3] [CO6]	[6M]
10.	a)	If the Power Spectral Density of $x(t)$ is $\operatorname{Sxx}(\omega)$ then find the Power Spectral Density of dx(t)/dt.	[L3] [CO6]	[6M]
	b)	The power spectral density of a stationary random process is given by $\operatorname{Sxx}(\omega)=\left\{\begin{array}{lll} \mathrm{A} & ; & -\mathrm{k}<\omega<\mathrm{k} \\ 0 & ; & \text { otherwise } \end{array}\right.$ Find the auto correlation function.	[L3] [CO6]	[6M]

Prepared by:

1. Dr P G Kuppusamy Professor
2. S V Rajesh Kumar Assistant Professor
3. G Raghul
